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ABSTRACT 

This thesis describes an experimental analysis to study the susceptibility of a 

micropmcessor-based jet engine controller to upsets caused by current and voltage tran- 

sients. A design automation environment which allows the run-time injection of tran- 

sients and the tracing from their impact device to the pin level is described The result- 

ing error data are categorized by the charge levels of the injected transients by location 

and by their potential to cause logic upsets, latched e m ,  and pin e m .  The results 

show a 3 picocouloumb threshold, below which the transients have little impact. An 

ALU transient is most likely to result in logic upsets and pin errors (Le., impact the 

external environment). The transients in the countdown unit are potentially serious 

since they can result in latched errors, thus causing latent faults. Suggestions to protect 

the pmcessor against these errors, by incorporating internal MOT detection and transient 

suppression techniques, are also made. 
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1. INTRODUCTION 

Transients in computer system hardware can occur from sources such as power 

transients, capacitive and inductive crosstalk and cosmic particle interventions. Previ- 

ous studies [Iyer86] have shown that approximately 80% of computer system failures 

can be attributed to transients. Thus, a study of transient fault propagation is essential 

for the design of reliable computer systems. The impact of transients is diflicult to 

modcl since the m e c h d m s  involved in their generation and propagation are highly 

complex. An experimental study can provide valuable insight and help develop a struc- 

tured basis for analytical modeling. 

This thesis describes an experimental analysis to study the susceptibility of 

microprocessor functional d t s  to upsets caused by c m n t  and voltage transients. The 

resulting transient fault propagation throughout the processor is also analyzed. The tar- 

get system for the study was a microprocessor-based digital jet-engine controller. The 

processor (an HS1602) was designed by Hamilton Standard for commercial aircraft and 

made available to NASA Langley AIFL4.B. The general objective of this study was to 

develop a design automation environment which would allow the run-time injection of 

transients and their tracing from the device to the pin-level. 

Transients of varying peak current levels were injected into all the functional units. 

The resulting e m r  data w m  categorized by charge levels of the injected transients and 

by their potential to cause logic upsets, latched errors, and pin errors. Probabilities of 

different types of error activity were computed, and an analysis of variance was per- 

formed. Results show that charge levels below 3 picoCoulombs have no measurable 
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impact on the processor. The functional units most susceptible to the transients are 

i&ntSed. The ALU and the countdown unit were found to be the critical units. 

Suggestions for the improvement of the processor’s transient fault sensitivity are made. 

The next chapter discusses related research. Chapter 3 contains a &tailed descnp- 

tion of the expimental pmcedure and measurements. Chapter 4 presents an assess- 

ment of the severity of transient faults by charge-level and location. An analysis of 

fault propagation is presented in Chapter 5. The final section highlights the important 

results and draws the key conclusions. 

I 
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2. RELATED RESEARCH 

Several researchers have investigated the impact of transients in computer systems. 

An early study of the effects and detection of failures in digital systems reported in 

[Ball691 showed that nearly 90% of failures were transient in nature. In [McConnel79] 

statistical distributions of transients were derived from automatic error logs on DEC 

systems. Recent studies using failure data from IBM mainfram es reported in [Iyer86] 

also showed that over 80% of major system errors were transient in nature. Further- 

more, a strong relationship was found between occurrence of transients and the level of 

system activity. 

Device level zhalysis of the mchanisms of transient upset has been in progress for 

quite some time. The hazards of transient upset in dynamic RAMS were first reported 

in [May791 where the behavior of alpha-particle-induced soft errors is explored. Simu- 

lation techniques for modeling the device level effects of cosmic particle-induced tran- 

sients have been developed in [McPartland81] and [Johnson85]. In [McPartlandSl] a 

SPICE circuit with a current source is used to represent the collected alpha-generated 

charge. In [Johnson851 a simulation technique for modeling the ion shunt effect was 

developed. An approximate analytic solution which models a resultant current transient 

is developed in [Messenger82]. The model includes parameters which represent the 

maximum current, the collection-time constant of the junction, and the time constant for 

initially establishing the ion track. The analytic solution was validated by comparison 

with other computer models, and is used in our study. 
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A series of experiments aimed at e m  analysis through the physical insertion of 

faults have been conducted by several investigators at the NASA ARLAB test-bed 

facility. An experiment to study fault latency distributions through hardware fault 

injections is described in [Shin84a,b]. Experience gathered from these studies shows 

that the data generated can provide considerable insight into error manifestation. 

Another useful study is [Courtois79] which describes a simulation experiment to deter- 

mine the efficiency of a number of emr-detection mechanisms. 

At the microprocessor level, studies have primarily focused on vulnerability 

assessment and software detection methods. An assessment of different transient-error 

test methods is presented in Woga851. In [Cusick85] a detailed analysis is presented of 

the vulnerability of the 280 microprocessor to ion-bombardment. Studies have also 

focused on the efficiency of methods for software detection of transient faults. An 

approach that involves the development of a state-transition matrix to describe the 

response to transient faults is described in [Glaser81]. In [Sosnowski86] transient faults 

which result in steady-state failures are analyzed and detection methods are presented. 

An investigation of fault propagation in microprocessors was conducted in 

&mnelino86]. An experimental analysis to study e m  propagation from the gate to the 

pin-level for stuck-at faults was described. The target system was a Bendix BDX-930 

digital avionic miniprocessor. The analysis quantified the dependency of the measured 

errof propagation on the location of the fault and the type of 

instruction/microinsuuction activity. The investigation presented a methodology for 

quantifying e m  propagation from the gate to pins for stuck-at faults. In [Chillaregel371 
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new experiments to study fault and error latency under varying workload conditions are 

discussed. 

An important question not addressed in the above studies is the propagation of 

transients from the’device level through the microprocessor functional units to the out- 

put pins. We have attempted to develop a comprehensive design automation environ- 

ment for quantifying the impact of transients from the device to the pin level. Apart 

from further knowledge of transient fault propagation in microprocessors, this informa- 

tion is crucial for quantifying the vulnerability of microprocessors to transients. 
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3. THEEXPERIMENT 

3.1. Synopsis 

The microprocessor used in our study is part of a real-time control system which 

monitors and controls the functioning of a jet engine currently used in commercial air- 

craf~ The system has a dual channel control which incorporates a variety of fault- 

tolerant design features integrated at different levels. Some of these features include a 

comparison of digital and analog UO parameters, software checks, memory checks and 

self-test. 

The control system, under study, periodically samples engine parameters such as 

temperature, fuel consumption, pilot inputs (from throttle and switches) and other exter- 

nal inputs (such as air speed). The sampled data are discretized and processed by the 

microprocessor, and the results are used to control the engine functions and to drive 

display indicators. The equations describing the control functions are incorporated into 

the application code which resides in EPROMs. The control system architecture thus 

includes microprocessors, memory units, communication channels and A/D and D/A 

converters. In this study we simulate the microprocessor and its associated memory 

with a view toward quantifying the impact of transient emrs. 

The microprocessor consists of seven functional units. The arithmetic and logic 

unit (ALU) contains six registers and can perform double precision arithmetic opera- 

tions. The control unit is made up of combinational logic and is responsible for issuing 

signals which control the operation of the ALU. The decoder unit decodes memory 
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enables and I/O signals. The multiplexer provides the discrete lines and buses. The 

countdown unit provides the chip-wide, clock signals. The watchdog unit provides syn- 

chronizing signals for the dual processor and a m e t  in case of parity error or a failure 

of the software sanity timer tq be reset. The application code periodically resets the 

software sanity timer (a failure to reset the software timer indicates an erroneous code 

execution sequence). A functional diagram of the HS1602 is shown in Figure 1. The 

chip was implemented in a three-micron CMOS gate array and has a six-MHz clock 

cycle. 

- 

Figure 1. Functional Diagram of the HS1602 . 

- 

DEC 

- 
I 
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3.2. The Simulator 

SPLICE1, a mixed-mode simulator, was chosen for use in this study. The choice 

was motivated by the need to perform an accurate and fast analysis at both the electrical 

level (where transients wen injected) and at the logic level (to permit simulation of the 

entire processor). The implementation and algorithmic details of SPLICE1 are given in 

[Saleh84] ; only a brief description is given here. The electrical analysis in SPLICE1 is 

based on the method of Iterated Timing Analysis (ITA). This technique incorporates a 

nonlinear relaxation method together with event-driven selective tracing. The ITA 

method has been shown to be as accurate as SPICE2 [Saleh87] (assuming identical dev- 

ice models) and can provide a speedup of up to two orders of magnitude. The logic 

analysis in SPLICE1 is performed using a relaxation based method that uses MOS 

oriented models. Accuracy is further enhanced by providing virtually unlimited levels 

of signal strength that can be associated with each of the logic states. This approach 

allows a correspondence between the electrical output conductance and the logic output 

strength. Accurate delay handling is achieved through a fanoutdependent delay model 

which is capable of handling first-order effects. A number of enhancements were made 

to the basic SPLICE1 simulator in order to efficiently handle transient fault injection 

and perform fault propagation analysis. These are outlined in the next section. 
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3.3. Simulator Enhancements 

Enhancements to SPLICE1 were required to facilitate our investigation and pro- 

vi& a &sign automation enyironment suitable for large-scale mor analysis. Since we 

were conducting a statistical study, and over a thousand simulations were needed to be 

performed, the usual method of injecting transients Piehl821 by modifying the circuit 

description was unsatisfactory. A new technique which modified the SPLICE1 relaxa- 

tion algorithm and permitted injection of transients without explicit modification of the 

circuit description was developed. The method is equivalent to a run-time modification 

of the circuit whereby a current source is added to the circuit. Since the injected 

cunent source is specified as a mathematical function, the transients can be of varying 

shapes and durations. The method is not limited to single fault injection, and it also 

allows the injection of transients at multiple nodes and at different times. Transient 

fault injection at a nodel is equivalent to altering the voltage level of the node over the 

time interval of the injected current waveform. A logic fault can occur because the 

injected current transient may cause the node voltage to vary beyond the logic threshold 

and thus change the logic state of the node. 

SPLICE1 originally permitted traces of a maximum of 16 nodes. The HS1602, 

however, has over 40oO nodes when described completely at the logic level. Thus, for 

a comprehensive study of fault propagation in the microprocessor, it was necessary to 

monitor all the circuit nodes. Accordingly, a new facility for tracing a l l  internal nodes 

was also designed and implemented. Additionally, new element models including 
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functional ROM and RAM models were also added. 

3.4. Transient Fault Injection 

Transients in integrated circuits can originate from a number of sources. The tools 

described in the foregoing sections allow the injection of transients as user specifiable 

current waveforms injected into the electrical analysis of SPLICE1. 

The specific waveforms injected in our study follow the functions proposed in 

[Messenger82], which depict the current transient response for an ion particle penetra- 

tion of a diffusion area. Figure 2 shows the five current waveforms used in the experi- 

ment. The injected current transients correspond to charge accumulations of 0.5, 1.0, 

2.0, 3.0 and 4.0 picoCoulombs. 
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Figure 2. Five Current Wavefarms 
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Several modifications were made to SPLICE1 to permit fault injection in run-time. 

In order to describe these modifications, the circuit simulation procedure in SPLICE1 is 

outlined below: 

Process BLT circuit description file to produce input file. 
Simulate input file with SPLICE1. 
Process the SPLICE1 output file. 

A simplified algorithm which includes the electrical analysis routine (Iterated Timing 

Analysis) is given below: 

Begin Simulation 
While (scheduled node change events in the time queue) 

For (each fanout list in the queue for the current time) 
For (each element in the fanout list) 
For (each fanout node i of the element) 

For (each fan-in element j of node i) 
If (element j is an electrical element) then 

Begin electrical analysis 
Set sum of current Isum = 0 
Set sum of conductance Gsum = 0 
For (each fan-in node k of element j) 

Gsum = Gsum + equivalent conducmce -_ node 1 
Isum = Isum + total current flowing into node k 
Calculate new change in voltage for this iteration 
Calculate new node voltage 
Determine if node has converged 



l3 

Modifications were made to the event queue processing, the electrical analysis and 

other sections of the code. These modifications allowed the simulator to determine the 

time at which a transient was to be injected and to alter the electrical evaluation for 

transient injection. In addition to. the usual SPLICE inputs, the modified version 

requires the name of an external file which contains the node(s) at which the 

transient(s) are to be injected, the time of injection and the current waveform parame- 

ters. A simplified algorithm for the modified simulator with added sections highlighted 

is given below: 

Read fault injection file 
Begin Simulation 
W e  (scheduled node change events in the time queue) 

At each time step schedule any fault injection nodes 
For (each fanout list in the queue for the current time) 

For (each element in the fanout list) 
For (each fanout node i of the element) 

For (each fan-in element j of node i) 

Begin electrical analysis 
If (element j is an electrical element) then 

If fault injection node 
Call injection current function 
Set Isurn to the returned value 

Set sum of current Isum = 0 
El!%! 

Set sum of conductance Gsum = 0 
For (each fan-in node k of element j) 

Gsum = Gsum + equivalent conductance at node k 
Isum = Isum + total current flowing into node k 
Calculate new change in voltage for this iteration 
Calculate new node voltage 
Determine if node has converged 
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In summary, the modified simulator allows transient injections without any explicit 

modification of the circuit description and a resulting additional recompilation for the 

simulator. The algorithm can also be used for multiple transient fault injections at mul- 

tiple nodes. 

3.5. Experimental Measurements 

Our simulations were based on the model parameters used in the HS1602 design 

and the capacitances extracted from the circuit layout. The simulations involved the 

microprocessor executing the initialization phase of its application code. During the 

initialization phase, the processor accesses the external ROM for instructions and 

another external ROM for initialization parameters. Arithmetic processing and address 

generation are also performed. Care was taken to ensure that a l l  the functional units at 

which transient fault injections were made were exercised. Fault injections were made 

at seven randomly chosen nodes in six of the functional units. For each node, al l  five 

charge levels were injected. Each charge level was injected at five Merent time-points 

during the execution of the application code sequence. This amounted to over lo00 

fault injections/simulations. 

Developing the postprocessor for the trace data was a novel project in itself. A 

trace facility was added to SPLICE1 which was capable of monitoring all the internal 

and external nodes. The error-data for analysis was generated by comparing each 

faulted simulation with a fault-& simulation. An enor event was defined as either a 

logic state change or a voltage level change large enough to cause a node to be 

I 
I 
I 
I 
I 
I 
1 
1 
1 
1 
I 
I 
I 
i 

1 
I 
I 
I 

i 



15 

rescheduled for evaluation at a future time. The trace data for each event consisted of 

the time of the event, the new and previous voltage levels (electrical nodes) or the new 

and previous logic levels and logic strengths (logic nodes). Several programs were 

written to process the trace data. The faulted simulation trace files were processed to 

extract all of the fault-event infomation. The fault infoxmation consisted of the fault- 

frct values, the faulted values, the times, and the node name. Each fault-event was also 

classified as either a “ W g  error (premature or late firing) or a value enor. The fault 

infomtion fles were then processed by a series of programs that collected statistics on 

groups of nodes, e.g., the input nodes to the ALU. This postprocessing also classified 

the collected statistics by charge level and time of fault injection and determined the 

following: 

1.) Upsets: Fault injections which resulted in a voltage transient large enough to con- 

stitute a logic level mor. 

2.) Latched Errors: Fault injections which resulted in voltage transients which caused 

crrors in the first level latches. 

3.) Module E m :  Fault injections which resulted in voltage transients that caused 

crrors at the VO nodes of the functional units. 

4.) Pin Errors: Fault injections which resulted in voltage transients that propagated to 

errors at the chips UO pins. 
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A versatile statistical package (SAS) was used to perform a range of analysis on 

the error data. The results of the analysis are presented in the following sections. 
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4. ANALYSIS OF TRANSIENTS BY CHARGE LEVEL AND LOCATION 

The overall results from the experiment with transients in the 0.5 to 4.0 

picoCoulomb range are shown in Table 1. The table shows that the injected transients 

have a 41.6% chance of causing a logic upset, a 5.7% chance of resulting in a latched. 

emor (Le., of causing a latent yet permanent error in the circuit) and a 5.6% chance of 

the error propagating to the pins (i.e., immediately affecting the external environment). 

Table 1. Transient Fault Severity 

I Percentage Typc of Error Occumnces 
Injected Transients 1050 100% 
Logic upsets 437 41.61% 
Latched Errors 60 5.71% 
Pin Errors 59 5.61% 

Thus, nearly 50% of the injected transients have no impact on the microprocessor 

behavior. In about 50% of the cases, a measurable change of circuit behavior occurs. 

However, only 11% of all injected transients cause either a permanent change in circuit 

behavior or af€ect the external environment. These results further show that transients 

below 3.0 picoCoulombs have little or no impact on the circuit. In the next section the 

impact of Werent charge levels in the transients is investigated. The impact on the 

diffennt functional units is also evaluated. 
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4.1. Charge Level Analysis 

This section analyzes the simulation results to quantify the sensitivity of the pro- 

cessor (logic upsets, latched and pin errors) to the magnitude of the injected transients. 

Depending on the operating environment, semiconductor devices are vulnerable to 

diffusion area penetration by ion particles of different energy levels. In our study, we 

injected charges varying from 0.5 picoCoulomb to 4.0 picoCoulombs. This represents 

the charge deposited by particles ranging from low energy alpha particles to the higher 

energy ion particles [Johnson85]. 

Statistical analysis of the er ro~  data was perfomed to determine the effect of 

Werent charge levels on upsets, latched errors, and pin enws. Figure 3 shows the dis- 

tribution of logic upsets by charge level in the injected transient. 
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The distribution shows a charge threshold (3 picoCoulombs) at which a sharp increase 

in error activity occurs. Note that over 73% of the upsets were observed for charges of 

3 picoColoumbs and 4 picoColoumbs. The ALU, control, and countdown are shown to 

be the major contributors for charge levels below 3 picoColoumbs. All the functional 

units make a significant contribution to the upsets at 4 picoColoumbs. Figure 4 shows 

a similar histogram for latched errors. Here the potential of a transient to cause latched 

errors is analyzed. 
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Figure 4. Histogram of Latched Errors 
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For each node where a transient fault injection was made, the fanout was traced to the 

latches. Here the critical charge level is even more distinct than for upsets. Over 99% 

of the latched errors occurred for charge levels of 3 and 4 picoColoumbs. The count- 

down, control, and ALU are seen to be the major contributors to latched errors. Even 

though a transient below the threshold can cause a logic upset, the probability of it 

being latched is small. Above the threshold, the probability of a transient being latched 

is dominant for the countdown unit. This dominance is probably due to its function of 
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generating the system clocks used by most of the chip-latches. 

Figure 5 shows the error distributions at the VO pins. Once again, the critical 

charge level is seen with over 98% of the pin errors observed for charges of 3 and 4 

pC. The ALU, control, and countdown continue to be the major contributors, with 

some contribution made by the decoder. 

I 
Figure 5. Emr Distribution at the VO Pins 1 
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4.2. Analysis by Functional Unit 

The impact of the injected transients on the Merent functional units, discussed in 

Section 4.1, is quantifkd in this section. The probability of a fault, injected into a 

given functional unit, causing an upset, a latched error, or a pin error is shown in Table 

2. 

Table 2. Probability of Upset, Latched and Pin Errors 

Functional Unit Upset Latched Error Pin Error 
Arithmetic 0.57 1429 0.0857 14 0.131429 
Countdown 0.26857 1 0.1 14286 0.08oooO 
Control 0.474286 0.102857 0.08oooO 
Decoder 0.308571 0.000000 . 0.045714 
Multiplexer 0.314286 0.000000 0.000000 

’ Watchdog 0.360000 0.040000 0.000000 

These probabilities were calculated from a base of 1050 transient fault injection simula- 

tions. In calculating the probability, the error activity resulting from a transient fault is 

counted either as existing or not existing, Le., the probabilities only refer to whether or 

not an injected fault causes an error (upset, latched or pin). 

The table shows that the ALU has the highest logic upset probability, with a 57% 

chance of a transient resulting in an upset. This high upset probability can be 

explained by the small capacitive loading of many of the nodes in the bit-sliced design. 

Furthermore, a transient in the ALU also has the greatest probability of causing a pin 

errw. This is probably because the ALU drives the 16 address pins. The ALU also has 

I 
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1 

a significant probability of latched errors, although this is somewhat lower than those 
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for the control unit. Thus, even though it is not the most complex unit (the control is 

the most complex), the ALU is seen to be very critical from a fault sensitivity 

viewpoint. The high latch error probability for the control unit is most likely due to the 

large number of ALU latches that are driven by the control unit. Transients in the 

countdown are most likely to result in latched errors. This is due to the fact that the 

countdown unit produces the clocking signals for a large number of latches in the pro- 

cessor. 

All of the functional units have at least a 30% chance of a transient resulting in a 

logic upset. None of the functional units has more than a 14% chance of having an 

error latched or observed at the pins. However, for most functional units the probabil- 

ity of a latched e m  is greater than that of a pin error. This higher latch error probabil- 

ity reveals a potential weakness in the circuit from a dependability viewpoint. The fact 

that an error propagates immediately to the pins makes it easily detectable by external 

error detection circuits. A latched error, however, can stay latent and undetected until it 

migrates to the pins at a later t he .  Thus the possibility exists of computing with bad 

data before an cn-or is detected at the pins. An Qdditional concern lies in the fact that if 

multiple latent latched errors are discovered simultaneously, or nearly so, the result 

could be a catastrophic system failure. 

Although the impact of a latched error is of concern, the fact that the countdown 

unit is responsible for a significant proportion of the latched errors offers a relatively 

simple solution for increasing the fault tolerance of the system. Since the countdown 

unit has relatively few output lines, it may be possible to monitor these lines for errors, 
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rather than the latches themselves. An alternative approach is to harden the devices in 

the latches and the countdown unit to withstand higher levels of transients. 

For two of the functimal units that drive the VO pins (the ALU and Decoder), the 

probability of a pin enor is greater than that of a latched error. The multiplexer 

(which drives the I/O pins) showed no significant probability of latched or pin error 

activity. This insensitivity is due to the lack of latches in the fanout path of the multi- 

plexer. Additionally, no pin errors occurred due to a multiplexer transient. This was 

due to the fact. that no upsets occurred on the multiplexer nodes that directly fanned 

into the VO drivers, probably due to the high capacitive load of these nodes. 
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5. FAULT PROPAGATION BETWEEN FUNCTIONAL UNITS 

The results were also analyzed for fault propagation from one unit to another. We 

& h e  external fault propagation as the probability of a transient fault in one functional 

unit causing error activity on the UO nodes of the other functional units. The UO nodes 

of all functional units were monitored for this purpose. Tables 3 and 4 show the results 

of this analysis. Table 3 compares the probability of a transient aecting the injected 

unit (source enor prob.) with the probability that external propagation occurs (ext. 

error prob.). 

Table 3. Probability of Source and External Functional Units Propagation 

Functional Unit Source Functional Unit External Functional Units 
Control 0.08 0.08 
Arithmetic 0.137 143 0.0857 143 
Decoder 0.022857 1 0.01 14286 

Watchdog 0.00571429 0.0057 1429 
Countdown 0.102857 0.102857 

Multiplexer 0.0857143 0 

Note that the probabilities arc once again calculated based on the existence or 

nonexistence of any amount of e m r  activity. The countdown unit, followed by the 

ALU, has the greatest probability of causing error activity at the UO nodes of the exter- 

nal functional units. There is a greater than 10% chance that a transient in the count- 

down unit will affect at least one other functional unit. It can be seen from Table 2 that 

a significant amount of this fault propagation results in lasting error activity as the 

latched and pin error probabilities. Table 3 also shows that the countdown, watchdog, 
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and control units have.the same probability of a transient affecting VO nodes of the 

other functional units as afYecting their own UO nodes. The ALU and decoder have 

almost half as much probability of affecting UO nodes of other functional units as their 

own. The multiplexer showed no significant probability of affecting the UO nodes of 

the other functional units. The countdown, watchdog, and control provide signals 

which are used almost exclusively within the chip. The multiplexer provides no signals 

that are used by the other functional units. In Table 4 results are quantified by specific 

external functional units. 

- 
Table 4. Probability of Functional Unit YO Node Error 

Functional Unit Control Arithmetic Decoder Multiplexer Watchdog Countdown 
Control 0.08 0.0514286 0.08 0.08 0.08 0 
Arithmetic 0.08 0.137143 0.01 14286 0.0857143 0.00571429 0 
Decoder 0.0114286 0.0114286 0.0228571 0.0114286 0 0 
Multiplexer 0 0 0 0.0857143 0 0 
Watchdog 0 0 0 0.00571429 0.00571429 0 
Countdown 0.102857 0.08 0 0 0.102857 0.102857 

I 

The results shown in this table indicate that the control, the watchdog, and the 

ALU are the functional units most a.f€ected by transients in the countdown unit, Le., by 

the specific propagation path. A few observations can also be made from Table 4. 

First, a fault in the multiplexer and watchdog unit is least likely to propagate externally. 

The reason for the relative isolation of the multiplexer should be clear from the preced- 

ing discussion. With the watchdog, a possible reason for the low propagation may be 

due to the fact that the watchdog has a single output line which is triggered only under 

very specific conditions (parity error in the ROM; failure of the software sanity timer to 
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reset). The countdown and the watchdog units are least impacted by faults in other 

units. This is most likely because the countdown unit has little fan-in from other units; 

a similar situation exists with the watchdog as well. Generally, no strong correlations 

are seen between the two units. Exceptions are the correlation between the countdown 

and the control unit, although this is only a one-way correlation. This correlation is 

probably due to the fact that the countdown unit produces the timing signals which 

determine the sequencing of the control unit. A similar situation exists between the 

countdown and the watchdog units. Other noteworthy correlations include the ALU 

and the multiplexer units. This correlation is caused by the many ALU latches that feed 

the multiplexer. Again, only one-way correlation is observed. 

Finally, we used the analysis of variance (ANOVA) methods to quantify the sensi- 

tivity of pin-level errors to error activity in the different functional units. The objective 

was to identify the'most critical unit h m  an external crror propagation viewpoint. 

Briefly, an analysis of variance allows the determination of the impact of variations in 

one or morc independent variables on a dependent variable. Thus, our analysis 

quantified the contribution of the different functional units to variations in pin-level 

error activity. The results of the ANOVA are shown in Figure 6. The ANOVA indi- 

cates the output pin e m r  activity is most sensitive to e m  activity in the ALU. 



Figure 6. Results of the ANOVA 

In summary, the analysis of this section has quantified the impact of c m n t  and 

voltage transients occurring in the merent functional units of the processor. An ALU 

transient is most likely to result. in logic upsets and pin errors. While the logic upsets 

by themselves are not of much concern, the pin e m  can impact the external environ- 

ment and may require external error detection circuitry. The transients in the count- 

down unit are more serious since they can result in latched errors, thus causing latent 

faults. The protection of the processor against these e m  requires a careful redesign 

of the circuit' to incorporate internal error detection and transient suppression tech- 

niques. 



6. CONCLUSIONS 

This thesis has described an experimental analysis to study the susceptibility of a 

microprocessor-based jet engine controller to upsets caused by current and voltage tran- 

sients. The development of a design automation environment which allows not only the 

automatic injection of transients in run-time, but also the evaluation of the impact of the 

fault as well, is described. Major results specific to the HS1602 are outlined below: 

Charge levels below 3 picoCoulombs have no significant impact on the processor 

or the external environment. We speculate that other processors have similar 

threshold levels for transient faults. 

Transients in the ALU were most likely to cause logic upsets and also had the 

greatest impact on output pin emrs. The pin-level e m  activity is most sensitive 

to the ALU error activity. 

Transients in the countdown unit are most likely to propagate to the other units 

and to cause latched errors (a potentially serious problem). 

The control unit, even though the most complex, is not the most fault sensitive. 

The results also suggest the locations where it may be most cost beneficial to 

introduce additional e m  detection and tolerance capabilities. By protecting the 

countdown unit, a significant reduction may be possible in the occurrence of 

latched errors, thus reducing the possibility of catastrophic failure due to current 

transients. 

. 
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